Single Electron Tunneling Device Based Computation

Sorin Cotofana

Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology (TU Delft), The Netherlands

Presentation Overview

- Introduction
- Single Electron Tunneling Devices
- Single Electron Encoded Logic
- Electron Counting
- Delay Insensitive Circuits
- Conclusions
Introduction

- Processing power of logic and arithmetic circuit has increased dramatically since the invention of the transistor.
- Moore’s “law” (1965) states that processing power doubles every 18 months.
- Why did this work for the last four decades?
 - Advances in algorithms and device technology.
 - Feature sizes reduction and hence increase in number of transistor per cm².

June 29, 2010 N3Cat - Second NaNoNetworking Day
Present and Near Future

- Current primary technology: (C)MOS
 - 90 nm, 65 nm, 45 nm, ...
 - Forecast: in 10 years physical gate lengths below 10 nm.
 - Predictions were (sometime) proved wrong in the past but ...
- Alternative (candidate) technologies:
 - Single Electron Tunneling (SET),
 - Rapid Single Flux Quantum (RSFQ),
 - Resonant Tunneling Diodes (RTD),
 - Magnetic and Electron Spin Devices,
 - Carbon Nanotubes,
 - ….

Present and Near Future

- Facts
 - Sooner or later MOS transistor feature size scaling ends.
 - As-of-yet it is not known which technology, if any, will succeed CMOS.
- Issues
 - Complexity
 - Unpredictability (variability)
 - Reliability
 - Behavior
 - Communication
- Required
 - Design Methodologies
 - Computation Paradigms
 - Architectures
 - Programming Models
Novel Nano Devices

- (C)MOS successor desirable characteristics include:
 - Greater feature size scaling potential than (C)MOS.
 - Extremely low power consumption.
 - Potential to operate at room temperature.
 - Sufficiently fast processing speed when used in conjunction with appropriate design techniques and architectures.

- Single Electron Tunneling (SET)
 - Simple device structure.
 - Single electron “currents”.
 - Technology independent.

Why SET?

- Tunneling is a behavior.
- Tunnel junctions can be manufactured in different technologies such as:
 - Conventional lithography,
 - Patterned oxide deposition,
 - Carbon nanotubes.
Single Electron Tunneling

- Basic circuit element:
 - (quantum) Tunnel Junction - two (metal) conductors separated by an insulator.
 - “leaking capacitor”, such that the leaking can be controlled by the voltage across the junction.

Orthodox Switching Model

- Critical Voltage:
 \[V_c = \frac{q_e}{2(C_s + C_i)} \]

- Switching Delay:
 \[t_d = -\ln(P_{error}) \frac{q_e R_i}{|V| - V_c} \]

- Energy Consumption:
 \[\Delta E = q_e (|V| - V_c) \]

We assume \(P_{error} = 10^{-8} \).
State of the Art

- Main focus - device fabrication.

- Circuit
 - Mimic the behavior of the MOS transistor
 - Delay: $O(100^+)$ electrons tunnel per switching event
 - Power: Large designs have leakage currents.
 - Multiple Tunnel Junction (MTJ)
 - Switch by transporting one electron only.
 - No leakage current.
 - Require complicated control logic with three voltage levels.

Electron Trap

- Can control the transport of individual electrons.
- Electrons are transported one at a time.
- The less transported, the faster the circuit!
Our Way

Goal:
- Design circuit with charge transport of one electron only and no leakage currents.

Strategy:
- Focus on SET specific behavior.
- Exploit the SET ability to transport individual electrons.
- Avoid mimicking existing CMOS design styles.
- Use the relation between Tunnel Junction and Threshold Logic.

Assumptions:
- The thermal tunneling/co-tunneling error probability of is less than P_{error}.
- Neglect random background charge.

Research lines:
- Single Electron Encoded Logic (SEEL).
- Electron Counting (EC).
- Delay Insensitive Circuits (DIC).

Single Electron Encoded Logic

- Represent bits by single electrons
 - ‘0’ = 0 electron
 - ‘1’ = 1 electron

Logic gate removes 1 electron from the output node if result is Boolean ‘1’.

$$V_{out} = \frac{-q_e}{C} \quad V_{out} = \frac{1.602e^{-19}(C)}{10e^{-18}(F)} = 16mV$$

Typically C is 10 aF.
Threshold Logic

- An n-input linear Threshold Logic Gate (TLG) can compute any linearly separable Boolean function given by:

\[F(X) = \text{sgn}(\mathcal{F}(X)) = \begin{cases} 0 & \text{if } \mathcal{F}(X) < 0 \\ 1 & \text{if } \mathcal{F}(X) \geq 0 \end{cases} \]

\[\mathcal{F}(X) = \sum_{i=1}^{n} \omega_i x_i - \theta \]

- A single n-input TLG can compute an n-input AND, OR, NAND or NOR function as follows:

\[\text{AND}(a_1, a_2, \ldots, a_n) = \text{sgn}\{a_1 + a_2 + \ldots + a_n - n\} \]

\[\text{OR}(a_1, a_2, \ldots, a_n) = \text{sgn}\{a_1 + a_2 + \ldots + a_n - 1\} \]

\[\text{NAND}(a_1, a_2, \ldots, a_n) = \text{sgn}\{-a_1 - a_2 - \ldots - a_n + n - 1\} \]

\[\text{NOR}(a_1, a_2, \ldots, a_n) = \text{sgn}\{-a_1 - a_2 - \ldots - a_n\} \]

SEEL Linear Threshold Gate

How to construct a threshold gate:
- Start with an electron box circuit.
- Bias \(V_j \) around \(V_c \) with bias voltage \(V_b \).
- Inputs \(V^p \) add to \(V_j \).
- Inputs \(V^n \) subtract from \(V_j \).

Result
- When \(V_j > V_c \) the output is ‘high’.
- \(V_o \) act as threshold adjuster.

Formally
\[
\begin{align*}
C^p &= \sum (C^p + C_o) \\
C^n &= \sum (C^m_n + C_o) \\
V_o &= \text{sgn}(V_j - V_c) = \text{sgn}\{\mathcal{f}(X)\} \\
\mathcal{f}(X) &= C^p \sum V^p_i C^p_i + C^n \sum V^n_i C^n_i - \psi \\
\psi &= 0.5 (C^p + C^n) e - C^m_n C_o V_b
\end{align*}
\]
SEEL Threshold Gates

- **AND gate**
 \[a \text{ AND } b = \text{SGN}\{a + b - 2\} \]
- **OR gate**
 \[a \text{ OR } b = \text{SGN}\{a + b - 1\} \]
- **Full Adder SUM gate**
 \[S_i = \text{sgn}\{a_i + b_i + c_{i+1} - 2c_{i-1}\} \]

SEEL Networks

- SEEL TLG operate correctly as stand-alone gates.
- As network components fan-out related feedback and feed forward effects occur.
- Two types of feedback occur:
 - Static feedback from bias voltages.
 - Dynamic feedback from switching activity.
- Static feedback can be compensated by adjusting the TLG circuit parameters.
- Dynamic feedback can be considered as “random” and cannot be compensated through the adjustment of circuit parameters.

Solution:
- Augment passive logic gates with an output buffer consisting of two SET transistors.
- Add bias capacitors to implement an inverting buffer.
SEEL Network Example

Gates consisting of logic gate combined with buffer.

Circuit Diagram

Simulation Results

Truth Table

Electron Counting Paradigm

Basic Principle: Represent values by number of electrons.

Specific building blocks are required!
Move k electron (MVke) Block

When enabled (re)moves V^*k electrons (from) to a reservoir.

4-bit Digital to Analog Converter

- Requires 4 MVke blocks.
Periodic Symmetric Function

- Can evaluate a PSF function characterized by a, b, and T.
- PSF functions important for many arithmetic functions such as parity and counting.
- The electron trap circuit displays periodic behavior.

PSF Block Implementation

- A SET inverter is used to implement a literal function such that
 - $F_p = '0'$ if $V_{out\ (trap)} > 0$
 - $F_p = '1'$ if $V_{out\ (trap)} < 0$
5-bit Analog to Digital Converter

- Requires 5 PSF blocks.

Electron Counting Addition

- A and B are converted to the charge encoded representation.
- By utilizing a common charge reservoir for A and B the addition operation is implemented at no additional costs.
- The charge encoded representation of A+B is reconverted to binary by n+1 PSF blocks.
- Adding two n-bit operands requires a depth-2 network composed of 3n+1 EC components (Mvke and PSF block).
- The addition scheme can be utilized to implement parity, multi-operand addition and n/log n counting functions.
Electron Counting Multiplication

- B is converted to the charge encoded representation.
- The charge encoded value B serves as input V, the input bits a_i are used as enable (E) signals.
- The charge encoded representation of A·B is reconverted to binary by n+1 PSF blocks.
- Multiplying two n-bit operands requires a depth-3 composed of 4n EC components.

... another way?

- Synchronous computations in SET:
 - Unknown delays => error correction required
 - Required clock area
 - Clock skew
 - Physical variations
- Avoid synchronous issues
 - Delay Insensitive Circuits
 - Brownian Circuits
- Universal set of circuit primitives
 - NAND-gate in clocked circuits
 - Token-based circuits: *non-clocked*
Signal Representation

- Less carriers to represent signal
- Token-based circuits
- Noise and Fluctuations

Our Approach

- No clock: wires more local, less heat dissipation
- Delay-insensitive circuits: robust to signal delays
- Brownian motion of signals: allow... and, exploit!

How to exploit noise?

Search in space through Brownian Motion

Similarly, state space of circuit can be searched
Brownian Motion Circuits

- Random charge transport in SET
- Utilize signal fluctuations
- Search through Brownian maze
- No deadlock
- Universal set:
 - Hub
 - Conservative Join

Universal set of circuit primitives

Hub

CJoin
Hub

Hub Simulation

June 29, 2010 N3Cat - Second NaNoNetworking Day
Conservative Join

CJ Simulation
Brownian Circuit Example

BN Simulation 1
BN Simulation 2

Half-Adder
BN Example: Half-adder

Half-adder Simulation
Conclusions

- Single Electron Encoded Logic family
 - Threshold Gate
 - Buffered Gates
 - Networks
 - Memory Elements
- Electron Counting Paradigm.
 - Specific Basic Building Blocks
 - Algorithms: Addition, Multiplication, Division
- Delay Insensitive Circuits
- Brownian Circuits

June 29, 2010 N3Cat - Second NaNoNetworking Day