

NANONETWORKS: A NEW COMMUNICATION PARADIGM

I. F. AKYILDIZ

Universitat Politecnica de Catalunya N³CAT (Center for NaNoNetworking in Catalunya) Barcelona, Spain

REFERENCES

I.F. Akyildiz, F. Brunetti, and C. Blazquez, "NanoNetworking: A New Communication Paradigm", Computer Networks Journal, (Elsevier), June 2008.

I.F. Akyildiz and J. M. Jornet, "Electromagnetic Wireless Nanosensor Networks", Nano Communication Networks Journal (Elsevier), May 2010.

TERAHERTZ BAND FOR EM BASED NANO-NETWORKS

J.M. Jornet and I.F. Akyildiz, "Channel Capacity of Electromagnetic Nanonetworks in the Terahertz Band", in Proc. of IEEE ICC, Cape Town, South Africa, 2010.

- Developed an Attenuation and Noise model for EM communications in the Terahertz Band (0.1-10 THz)
- Uniqueness of the Terahertz band:
 - * Terahertz channel is seriously affected by the presence of different molecules present in the medium
 - * High molecular absorption attenuates the travelling wave and introduces noise into the channel

IFA'2010 BARCELONA 5

WHAT DID WE LEARN?

- Terahertz communication channel has a strong dependence on
 - * the transmission distance
 - * medium molecular composition.
- Main factor affecting the performance of the Terahertz band
 - → the presence of water vapor molecules.
- Terahertz frequency band offers incredibly huge bandwidths for short range (less than 1m) deployed nano-networks

TERAHERTZ COMMUNICATIONS

- ■Some novel properties:
 - -Extreme large bandwidths
 - -The noise in the terahertz band is neither additive nor white.

- Accurate channel models accounting for molecular absorption, molecular noise, multi-path, etc.
- New communication techniques

 (e.g., sub-picosecond or femtosecond long pulses, multicarrier modulations, MIMO boosted with large integration of nano-antennas?).
- -This band is still not regulated, we can contribute to the development of future communication standards in THz band.

IFA'2010 BARCELONA

RESEARCH CHALLENGES IN TERAHERTZ COMMUNICATIONS

- New information encoding techniques, definition of new codes tailored to the channel characteristics (time varying channel, non white noise).
- -Frame and packet size, synchronization issues, transceivers architectures, etc. need to be defined.
- -Network topology issues, network connectivity, network capacity, how are they affected by the channel?

RESEARCH CHALLENGES IN TERAHERTZ COMMUNICATIONS

- New MACs exploiting the properties of the THz band (e.g., collisions among femtosecond pulses may be negligible, OFDMA may be useful in such big bandwidths).
- New routing protocols and transport layer solutions for reliable transport in terahertz networks. Cross-layer solutions?
- What are the applications enabled by this huge bandwidth?

Short-Range Communication using Molecular Motors

What is a Molecular Motor?

- Is a protein or a protein complex that transforms chemical energy into mechanical work at a molecular scale
- Has the ability to move molecules

IFA'2010 BARCELONA 17

Short-Range Communication using Molecular Motors

Molecular Motors:

- * Found in eukaryotic cells in living organisms
- * Molecular motors travel or move along molecular rails called microtubules
- * Movement created by molecular motors can be used to transport information molecules

IFA'2010

BARCELONA

18

Short-Range Communication using Molecular Motors

IFA'2010 BARCELONA 19

Short-Range Communication using Molecular Motors

Encapsulation of information:

Information can be encapsulated in vesicles.

A vesicle is a fluid or an air-filled cavity that can store or digest cell products.

IFA'2010

20

Problems of Short Range Molecular Communication

- Molecular Motors:
 - Molecular motors velocity is 500 nm/s
 - They detach of the microtubule and diffuse away when they have moved distances in the order of 1 μ m
 - Development of a proper network infrastructure of microtubules is required
 - Molecular motors move in a unidirectional way through the microtubules
- > very long communication delays!

 IFA'2010

 BARCELONA

23

Problems of Short Range Molecular Communication

- Calcium Signaling
 - $lue{}$ Very high delays for longer (more than few μ m) distances

Medium Range Molecular Communication: Flagellated Bacteria

- Bacteria are microorganisms composed only by one prokaryotic cell.
- Flagellum allows them to convert chemical energy into motion.
- Escherichia coli (E. coli) has between 4 and 10 flagella, which are moved by rotary motors, fuelled by chemical compounds.
- E. coli bacteria is approximately 2 μ m long and 1 μ m in diameter.

Medium-Range Communication using Flagellated Bacteria

- Information is expressed as a set of DNA base pairs, the DNA packet, which is inserted in a plasmid.

DNA packet is introduced inside the

Encoding

bacteria's cytoplasm, using:

- Plasmids
- Bacteriophages
- Bacterial Artificial Chromosomes (BACs)
- Bacteria sense gradients of attractant particles.

Transmission Propagation

- They move towards the direction and finds more attractants (chemotaxis).
- The receiver releases attractants so the bacteria can reach it.

DNA packet is extracted from the plasmid using:

Decodina

Reception

Restriction endonucleases enzymes

IFA'2010 BARCELONA 27

Long-Range Communication using Pheromones

L. Parcerisa and I.F. Akyildiz,

"Molecular Communication Options for Long Range Nanonetworks", Computer Networks (Elsevier) Journal, Fall 2009

Comparer Methorics (Cisevier) Cournar, Fair 2009				
Encoding	Transmission	Signal Propagation	Reception	Decoding
Selection of the specific pheromones to transmit the information and produce the reaction at the intended receiver	Releasing the pheromones through liquids or gases	Pheremones are diffused into the medium	Pheremones bind to the Receptor	Interpretation of the information (Different pheremones trigger different reactions)
IFA'2010		BARCELONA		28

OBJECTIVE OF THE PHYSICAL CHANNEL MODEL

Derivation of DELAY and ATTENUATION

as functions of the frequency and the transmission range

- Non-linear attenuation with respect to the frequency
- Distortion due to delay dispersion

MODELING CHALLENGES FOR THE PHYSICAL CHANNEL

Transmitter

■ How chemical reactions allow the modulation of molecule concentrations as transmission signals ?

Propagation

■ How the "particle diffusion" controls the propagation of modulated concentrations?

Receiver

■ How chemical reactions allow to sense the modulated molecule concentrations from the environment and translate them into received signals?

IFA'2010 BARCELONA 33

MOLECULE DIFFUSION CHANNEL MODEL

Transmitter Model

- Design of a chemical actuator scheme (chemical transmitting antenna)
- Analytical modeling of the chemical reactions involved in an actuator
- Signal to be transmitted → Modulated concentration

MOLECULE DIFFUSION CHANNEL MODEL

Propagation Model

- Solution of the diffusion physical laws (FICK's First and Second Laws (1855)) in the presence of an external concentration modulation
- Modulated concentration → Space-time concentration evolution

IFA'2010 BARCELONA 35

MOLECULE DIFFUSION CHANNEL MODEL

Receiver Model

- Design of a chemical receptor scheme (chemical receiving antenna)
- Analytical modeling of the chemical reactions involved in a receptor
- Propagated modulated concentration → Received signal

FINAL GOAL OF MOLECULAR COMMUNICATION RESEARCH

Physical Channel Model

 How information is transmitted, propagated and received when a molecular carrier is used

Noise Representation

 How can be physically and mathematically expressed the noise affected information transmitted through molecular communication Molecular Channel Capacity

Information Encoding/Decoding

- Concentration
- Chemical structure
- Encapsulation